Code: EE5T6

III B.Tech - I Semester - Regular/ Supplementary Examinations October 2017

LINEAR AND DIGITAL INTEGRATED CIRCUIT APPLICATIONS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) In op-amp specifications, define slew-rate and how it is calculated?
b) Calculate the output voltage V_{o}.

c) What are the two requirements for generation of oscillations in oscillator circuits?
d) How filters are classified into first order and second order?
e) Draw a simple block diagram of a voltage controlled oscillator.
f) Define capture range of a PLL circuit.
g) Write down any two applications of multiplexer and decoder.
h) Draw the block diagram of a 2bit Ripple Carry look ahead adder.
i) Write down the characteristic table of a JK Flipflop.
j) Draw the block diagram of a mod-2 counter.
k) What is meant by 3 dB cutoff frequency in filters?
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.a) Write down the differences between a practical op-amp and an ideal op-amp.
b) Derive the expression for V_{o} interms of $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ for the instrumentation amplifier given below.

8 M

3.a) Draw the diagram of a Wien bridge oscillator and explain its operation.

8 M
b) Realize/design a passive element (resistor) using switch capacitor filters technique, explain its working principle. Write down few advantages of switch capacitor filters. 8 M
4.a) Draw the block diagram of a PLL circuit. Explain the operation of each block.
b) Give an example of a digital phase detector used in PLL circuit.
5.a) Design a combinational multiplier over A (3bits) and B(2bits).
b) Realize a full adder with
i) 2×1 multiplexer and
ii) Half adders.
6.a) Design a mod-10 counter using Johnson counter and write down its operation and mention generated state sequence.

10 M
b) With the help of block diagram, explain the working principle of a Serial in parallel out shift register.

